ServiceNow AI Research Releases DRBench, a Realistic Enterprise Deep-Research Benchmark

ServiceNow Research has released DRBench, a benchmark and runnable environment to evaluate “deep research” agents on open-ended enterprise tasks that require synthesizing facts from both public web and private organizational data into properly cited reports. Unlike web-only testbeds, DRBench stages heterogeneous, enterprise-style workflows—files, emails, chat logs, and cloud storage—so agents must retrieve, filter, and attribute…

Read More

7 LLM Generation Parameters—What They Do and How to Tune Them?

Tuning LLM outputs is largely a decoding problem: you shape the model’s next-token distribution with a handful of sampling controls—max tokens (caps response length under the model’s context limit), temperature (logit scaling for more/less randomness), top-p/nucleus and top-k (truncate the candidate set by probability mass or rank), frequency and presence penalties (discourage repetition or encourage…

Read More

NVIDIA Researchers Propose Reinforcement Learning Pretraining (RLP): Reinforcement as a Pretraining Objective for Building Reasoning During Pretraining

NVIDIA AI has introduced Reinforcement Learning Pretraining (RLP), a training objective that injects reinforcement learning into the pretraining stage rather than deferring it to post-training. The core idea is simple and testable: treat a short chain-of-thought (CoT) as an action sampled before next-token prediction and reward it by the information gain it provides on the…

Read More

A Coding Implementation of Advanced PyTest to Build Customized and Automated Testing with Plugins, Fixtures, and JSON Reporting

In this tutorial, we explore the advanced capabilities of PyTest, one of the most powerful testing frameworks in Python. We build a complete mini-project from scratch that demonstrates fixtures, markers, plugins, parameterization, and custom configuration. We focus on showing how PyTest can evolve from a simple test runner into a robust, extensible system for real-world…

Read More

Andrej Karpathy Releases ‘nanochat’: A Minimal, End-to-End ChatGPT-Style Pipeline You Can Train in ~4 Hours for ~$100

Andrej Karpathy has open-sourced nanochat, a compact, dependency-light codebase that implements a full ChatGPT-style stack—from tokenizer training to web UI inference—aimed at reproducible, hackable LLM training on a single multi-GPU node. The repo provides a single-script “speedrun” that executes the full loop: tokenization, base pretraining, mid-training on chat/multiple-choice/tool-use data, Supervised Finetuning (SFT), optional RL on…

Read More

Alibaba’s Qwen AI Releases Compact Dense Qwen3-VL 4B/8B (Instruct & Thinking) With FP8 Checkpoints

Do you actually need a giant VLM when dense Qwen3-VL 4B/8B (Instruct/Thinking) with FP8 runs in low VRAM yet retains 256K→1M context and the full capability surface? Alibaba’s Qwen team has expanded its multimodal lineup with dense Qwen3-VL models at 4B and 8B scales, each shipping in two task profiles—Instruct and Thinking—plus FP8-quantized checkpoints for…

Read More

Meta AI’s ‘Early Experience’ Trains Language Agents without Rewards—and Outperforms Imitation Learning

How would your agent stack change if a policy could train purely from its own outcome-grounded rollouts—no rewards, no demos—yet beat imitation learning across eight benchmarks? Meta Superintelligence Labs propose ‘Early Experience‘, a reward-free training approach that improves policy learning in language agents without large human demonstration sets and without reinforcement learning (RL) in the…

Read More