How to Build an End-to-End Interactive Analytics Dashboard Using PyGWalker Features for Insightful Data Exploration
def generate_advanced_dataset(): np.random.seed(42) start_date = datetime(2022, 1, 1) dates = [start_date + timedelta(days=x) for x in range(730)] categories = [‘Electronics’, ‘Clothing’, ‘Home & Garden’, ‘Sports’, ‘Books’] products = { ‘Electronics’: [‘Laptop’, ‘Smartphone’, ‘Headphones’, ‘Tablet’, ‘Smartwatch’], ‘Clothing’: [‘T-Shirt’, ‘Jeans’, ‘Dress’, ‘Jacket’, ‘Sneakers’], ‘Home & Garden’: [‘Furniture’, ‘Lamp’, ‘Rug’, ‘Plant’, ‘Cookware’], ‘Sports’: [‘Yoga Mat’, ‘Dumbbell’, ‘Running Shoes’,…
